Speech Recognition by Denoising and Dereverberation Based on Spectral Subtraction in a Real Noisy Reverberant Environment

نویسندگان

  • Kyohei Odani
  • Longbiao Wang
  • Atsuhiko Kai
چکیده

A blind dereverberation method based on spectral subtraction using a multi-channel least mean squares algorithm was previously proposed. The results of a large vocabulary continuous speech recognition task showed that this method achieved significant improvements over the conventional method based on cepstral mean normalization and beamforming in a simulated reverberant environment without additive noise. In this paper, we evaluate the blind dereverberation method in a real noisy reverberant environment. We present a denoising and dereverberation method based on power spectral subtraction or generalized spectral subtraction, and evaluate our proposed method using speech in a real environment. The generalized spectral subtraction based method achieves an average relative word error reduction rate of 39.1% and 11.5% compared to the conventional cepstral mean normalization and power spectral subtraction based methods, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dereverberation and denoising based on generalized spectral subtraction by multi-channel LMS algorithm using a small-scale microphone array

A blind dereverberation method based on power spectral subtraction (SS) using a multi-channel least mean squares algorithm was previously proposed to suppress the reverberant speech without additive noise. The results of isolated word speech recognition experiments showed that this method achieved significant improvements over conventional cepstral mean normalization (CMN) in a reverberant envi...

متن کامل

Speech Recognition by Dereverberation Method Based on Multi-channel LMS Algorithm in Noisy Reverberant Environment

1 Introduction In a distant-talking environment, channel distortion drastically degrades speech recognition performance because of mismatches between the training and test environments. The current approaches focusing on robustness issues for automatic speech recognition (ASR) in noisy reverberant environments can be classified as speech enhancement, robust feature extraction, or model adaptati...

متن کامل

Distant-talking speaker identification by generalized spectral subtraction-based dereverberation and its efficient computation

Previously, a dereverberation method based on generalized spectral subtraction (GSS) using multi-channel least mean-squares (MCLMS) has been proposed. The results of speech recognition experiments showed that this method achieved a significant improvement over conventional methods. In this paper, we apply this method to distant-talking (far-field) speaker recognition. However, for far-field spe...

متن کامل

Multi-step linear prediction based speech dereverberation in noisy reverberant environment

A speech signal captured by a distant microphone is generally contaminated by reverberation and background noise, which severely degrade the automatic speech recognition (ASR) performance. In this paper, we first extend a previously proposed single channel dereverberation algorithm to a multi-channel scenario. The method estimates late reflections using multichannel multi-step linear prediction...

متن کامل

Optimization of dereverberation parameters based on likelihood of speech recognizer

Speech recognition under reverberant condition is a difficult task. Most dereverberation techniques used to address this problem enhance the reverberant waveform independent from that of the speech recognizer. In this paper, we improve the conventional Spectral Subtraction-based (SS) dereverberation technique. In our proposed approach, the dereverberation parameters are optimized to improve the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012